We present a novel algorithm, \hdgc, that marries graph convolution with binding and bundling operations in hyperdimensional computing for transductive graph learning. For prediction accuracy \hdgc outperforms major and popular graph neural network implementations as well as state-of-the-art hyperdimensional computing implementations for a collection of homophilic graphs and heterophilic graphs. Compared with the most accurate learning methodologies we have tested, on the same target GPU platform, \hdgc is on average 9561.0 and 144.5 times faster than \gcnii, a graph neural network implementation and HDGL, a hyperdimensional computing implementation, respectively. As the majority of the learning operates on binary vectors, we expect outstanding energy performance of \hdgc on neuromorphic and emerging process-in-memory devices.


翻译:我们提出了一种新颖算法——超维图传导(HDGC),该算法将图卷积与超维计算中的绑定和捆绑操作相结合,用于传导式图学习。在预测准确性方面,HDGC在一系列同配图和异配图上超越了主流且流行的图神经网络实现以及最先进的超维计算实现。与我们测试过的最准确学习方法相比,在同一目标GPU平台上,HDGC平均比图神经网络实现GCNII快9561.0倍,比超维计算实现HDGL快144.5倍。由于大部分学习过程在二值向量上运行,我们预期HDGC在神经形态计算和新兴存内处理设备上将展现出卓越的能效表现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员