We introduce molFTP (molecular fragment-target prevalence), a compact representation that delivers strong predictive performance. To prevent feature leakage across cross-validation folds, we implement a dummy-masking procedure that removes information about fragments present in the held-out molecules. We further show that key leave-one-out (key-loo) closely approximates true molecule-level leave-one-out (LOO), with deviation below 8% on our datasets. This enables near full data training while preserving unbiased cross-validation estimates of model performance. Overall, molFTP provides a fast, leakage-resistant fragment-target prevalence vectorization with practical safeguards (dummy masking or key-LOO) that approximate LOO at a fraction of its cost.


翻译:本文介绍了一种紧凑的分子表示方法——分子片段-靶标流行度(molFTP),该表示展现出优异的预测性能。为防止特征在交叉验证折间发生泄漏,我们实施了虚拟掩蔽程序,以消除保留分子中存在的片段信息。进一步研究表明,关键留一法(key-LOO)能够紧密逼近真实的分子级留一法(LOO),在我们的数据集上偏差低于8%。该方法使得在近乎全数据训练的同时,仍能保持模型性能的无偏交叉验证估计。总体而言,molFTP提供了一种快速、抗泄漏的片段-靶标流行度向量化方案,其通过实用保护措施(虚拟掩蔽或关键留一法)以极低的计算成本实现了对LOO的有效近似。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员