In the context of requirements engineering, relation extraction involves identifying and documenting the associations between different requirements artefacts. When dealing with textual requirements (i.e., requirements expressed using natural language), relation extraction becomes a cognitively challenging task, especially in terms of ambiguity and required effort from domain-experts. Hence, in highly-adaptive, large-scale environments, effective and efficient automated relation extraction using natural language processing techniques becomes essential. In this chapter, we present a comprehensive overview of natural language-based relation extraction from text-based requirements. We initially describe the fundamentals of requirements relations based on the most relevant literature in the field, including the most common requirements relations types. The core of the chapter is composed by two main sections: (i) natural language techniques for the identification and categorization of equirements relations (i.e., syntactic vs. semantic techniques), and (ii) information extraction methods for the task of relation extraction (i.e., retrieval-based vs. machine learning-based methods). We complement this analysis with the state-of-the-art challenges and the envisioned future research directions. Overall, this chapter aims at providing a clear perspective on the theoretical and practical fundamentals in the field of natural language-based relation extraction.


翻译:在需求工程领域,关系抽取涉及识别并记录不同需求制品之间的关联。当处理文本化需求(即使用自然语言表述的需求)时,关系抽取成为一项认知挑战性任务,尤其在歧义性和领域专家所需投入精力方面表现突出。因此,在高度自适应的大规模环境中,利用自然语言处理技术实现高效自动化的关系抽取变得至关重要。本章对基于自然语言的文本需求关系抽取进行全面综述。我们首先依据该领域最具相关性的文献阐述需求关系的基本原理,包括最常见的需求关系类型。本章核心由两个主要部分组成:(i)用于需求关系识别与分类的自然语言技术(即句法技术与语义技术),以及(ii)面向关系抽取任务的信息抽取方法(即基于检索的方法与基于机器学习的方法)。我们结合当前最前沿的挑战与未来研究方向的展望来补充此项分析。总体而言,本章旨在为基于自然语言的关系抽取领域提供清晰的理论与实践基础视角。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
19+阅读 · 2020年7月13日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员