Cryptocurrencies that are based on Proof-of-Work (PoW) often rely on special purpose hardware to perform so-called mining operations that secure the system, with miners receiving freshly minted tokens as a reward for their work. A notable example of such a cryptocurrency is Bitcoin, which is primarily mined using application specific integrated circuit (ASIC) based machines. Due to the supposed profitability of cryptocurrency mining, such hardware has been in great demand in recent years, in-spite of high associated costs like electricity. In this work, we show that because mining rewards are given in the mined cryptocurrency, while expenses are usually paid in some fiat currency such as the United States Dollar (USD), cryptocurrency mining is in fact a bundle of financial options. When exercised, each option converts electricity to tokens. We provide a method of pricing mining hardware based on this insight, and prove that any other price creates arbitrage. Our method shows that contrary to the popular belief that mining hardware is worth less if the cryptocurrency is highly volatile, the opposite effect is true: volatility increases value. Thus, if a coin's volatility decreases, some miners may leave, affecting security. We compare the prices produced by our method to prices obtained from popular tools currently used by miners and show that the latter only consider the expected returns from mining, while neglecting to account for the inherent risk in mining, which is due to the high exchange-rate volatility of cryptocurrencies. Finally, we show that the returns made from mining can be imitated by trading in bonds and coins, and create such imitating investment portfolios. Historically, realized revenues of these portfolios have outperformed mining, showing that indeed hardware is mispriced.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
2+阅读 · 2023年12月5日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
2+阅读 · 2023年12月5日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
10+阅读 · 2018年4月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员