Behavioral cloning is a simple yet effective technique for learning sequential decision-making from demonstrations. Recently, it has gained prominence as the core of foundation models for the physical world, where achieving generalization requires countless demonstrations of a multitude of tasks. Typically, a human expert with full information on the task demonstrates a (nearly) optimal behavior. In this paper, we propose to hide some of the task's information from the demonstrator. This ``blindfolded'' expert is compelled to employ non-trivial exploration to solve the task. We show that cloning the blindfolded expert generalizes better to unseen tasks than its fully-informed counterpart. We conduct experiments of real-world robot peg insertion tasks with (limited) human demonstrations, alongside videogames from the Procgen benchmark. Additionally, we support our findings with theoretical analysis, which confirms that the generalization error scales with $\sqrt{I/m}$, where $I$ measures the amount of task information available to the demonstrator, and $m$ is the number of demonstrated tasks. Both theory and practice indicate that cloning blindfolded experts generalizes better with fewer demonstrated tasks. Project page with videos and code: https://sites.google.com/view/blindfoldedexperts/home


翻译:行为克隆是一种从演示中学习序列决策的简单而有效的技术。近年来,它已成为物理世界基础模型的核心,其中实现泛化需要海量任务的无尽演示。通常,拥有任务完整信息的人类专家会展示(近乎)最优的行为。在本文中,我们提出向演示者隐藏部分任务信息。这种“蒙眼”专家被迫采用非平凡的探索来解决任务。我们证明,克隆蒙眼专家比克隆完全知情专家在未见任务上具有更好的泛化能力。我们在真实世界机器人插孔任务(基于有限的人类演示)以及Procgen基准的电子游戏中进行了实验。此外,我们通过理论分析支持了这些发现,该分析证实泛化误差随$\sqrt{I/m}$缩放,其中$I$衡量演示者可获取的任务信息量,$m$为演示任务的数量。理论与实践均表明,克隆蒙眼专家能以更少的演示任务实现更好的泛化。项目页面含视频与代码:https://sites.google.com/view/blindfoldedexperts/home

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员