We describe Bayes factors functions based on the sampling distributions of \emph{z}, \emph{t}, $χ^2$, and \emph{F} statistics, using a class of inverse-moment prior distributions to define alternative hypotheses. These non-local alternative prior distributions are centered on standardized effects, which serve as indices for the Bayes factor function. We compare the conclusions drawn from resulting Bayes factor functions to those drawn from Bayes factors defined using local alternative prior specifications and examine their frequentist operating characteristics. Finally, an application of Bayes factor functions to replicated experimental designs in psychology is provided.


翻译:本文基于\emph{z}统计量、\emph{t}统计量、$χ^2$统计量及\emph{F}统计量的抽样分布,描述了一类贝叶斯因子函数,其中采用一类逆矩先验分布来定义备择假设。这些非局部备择先验分布以标准化效应为中心,后者作为贝叶斯因子函数的指标。我们将由此得到的贝叶斯因子函数所得结论,与采用局部备择先验设定所定义的贝叶斯因子所得结论进行比较,并考察其频率学派操作特性。最后,提供了贝叶斯因子函数在心理学重复实验设计中的应用实例。

0
下载
关闭预览

相关内容

【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
19+阅读 · 2021年8月15日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
面试题:简单说说贝叶斯定理
七月在线实验室
12+阅读 · 2019年6月12日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Schwarz maps with symmetry
Arxiv
0+阅读 · 1月5日
VIP会员
相关VIP内容
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
19+阅读 · 2021年8月15日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
面试题:简单说说贝叶斯定理
七月在线实验室
12+阅读 · 2019年6月12日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员