Lung and colon cancer are serious worldwide health challenges that require early and precise identification to reduce mortality risks. However, diagnosis, which is mostly dependent on histopathologists' competence, presents difficulties and hazards when expertise is insufficient. While diagnostic methods like imaging and blood markers contribute to early detection, histopathology remains the gold standard, although time-consuming and vulnerable to inter-observer mistakes. Limited access to high-end technology further limits patients' ability to receive immediate medical care and diagnosis. Recent advances in deep learning have generated interest in its application to medical imaging analysis, specifically the use of histopathological images to diagnose lung and colon cancer. The goal of this investigation is to use and adapt existing pre-trained CNN-based models, such as Xception, DenseNet201, ResNet101, InceptionV3, DenseNet121, DenseNet169, ResNet152, and InceptionResNetV2, to enhance classification through better augmentation strategies. The results show tremendous progress, with all eight models reaching impressive accuracy ranging from 97% to 99%. Furthermore, attention visualization techniques such as GradCAM, GradCAM++, ScoreCAM, Faster Score-CAM, and LayerCAM, as well as Vanilla Saliency and SmoothGrad, are used to provide insights into the models' classification decisions, thereby improving interpretability and understanding of malignant and benign image classification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员