We introduce a natural temporal analogue of Eulerian circuits and prove that, in contrast with the static case, it is NP-hard to determine whether a given temporal graph is temporally Eulerian even if strong restrictions are placed on the structure of the underlying graph and each edge is active at only three times. However, we do obtain an FPT-algorithm with respect to a new parameter called interval-membership-width which restricts the times assigned to different edges; we believe that this parameter will be of independent interest for other temporal graph problems. Our techniques also allow us to resolve two open question of Akrida, Mertzios and Spirakis [CIAC 2019] concerning a related problem of exploring temporal stars. Furthermore, we introduce a vertex-variant of interval-membership-width (which can be arbitrarily larger than its edge-counterpart) and use it to obtain an FPT-time algorithm for a natural vertex-exploration problem that remains hard even when interval-membership-width is bounded.


翻译:我们引入了欧莱安电路的自然时间模拟,并证明与静态情况相反,很难确定某个特定时间图是否属时间性的欧莱安,即使对底图结构设置了严格的限制,而且每个边缘仅活跃3次。然而,我们确实获得了一个称为间隙会合-边缘的新参数的FPT-algorithm,该参数限制不同边缘的时间分配;我们认为,这一参数对其他时间图问题具有独立的兴趣。我们的技术还使我们能够解决阿克里达、默奇奥和斯皮拉基斯(CIAC 2019)两个与探索时间恒星有关的问题。此外,我们引入了一个间会合线的顶点变量(可任意大于其边角),并使用它来获得FPT-时间算法处理一个天然的脊椎解问题,即使间会合点被捆绑起来,这个问题也仍然很困难。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2022年1月21日
Arxiv
4+阅读 · 2020年10月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员