Since the era of big data, the Internet has been flooded with all kinds of information. Browsing information through the Internet has become an integral part of people's daily life. Unlike the news data and social data in the Internet, the cross-media technology information data has different characteristics. This data has become an important basis for researchers and scholars to track the current hot spots and explore the future direction of technology development. As the volume of science and technology information data becomes richer, the traditional science and technology information retrieval system, which only supports unimodal data retrieval and uses outdated data keyword matching model, can no longer meet the daily retrieval needs of science and technology scholars. Therefore, in view of the above research background, it is of profound practical significance to study the cross-media science and technology information data retrieval system based on deep semantic features, which is in line with the development trend of domestic and international technologies.


翻译:自大数据时代以来,因特网就充斥着各种信息。通过因特网浏览信息已成为人们日常生活的一个组成部分。与互联网上的新闻数据和社会数据不同,跨媒体技术信息数据具有不同的特点。这些数据已成为研究人员和学者跟踪当前热点和探索技术发展未来方向的重要基础。随着科技信息数据量的增多,传统的科技信息检索系统只能支持单式数据检索和使用过时的数据关键词匹配模式,无法满足科技学者的日常检索需求。因此,鉴于上述研究背景,根据与国内和国际技术发展趋势相一致的深层语义特征研究跨媒体科学和技术信息检索系统具有深远的实际意义。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员