It is critical for a keyword spotting model to have a small footprint as it typically runs on-device with low computational resources. However, maintaining the previous SOTA performance with reduced model size is challenging. In addition, a far-field and noisy environment with multiple signals interference aggravates the problem causing the accuracy to degrade significantly. In this paper, we present a multi-channel ConvMixer for speech command recognitions. The novel architecture introduces an additional audio channel mixing for channel audio interaction in a multi-channel audio setting to achieve better noise-robust features with more efficient computation. Besides, we proposed a centroid based awareness component to enhance the system by equipping it with additional spatial geometry information in the latent feature projection space. We evaluate our model using the new MISP challenge 2021 dataset. Our model achieves significant improvement against the official baseline with a 55% gain in the competition score (0.152) on raw microphone array input and a 63% (0.126) boost upon front-end speech enhancement.


翻译:关键字识别模型要有一个很小的足迹, 因为它通常以低计算资源运行在多频道音频环境中。 但是, 保持先前的SOTA性能, 其模型尺寸较小, 具有挑战性。 此外, 一个有多个信号干扰的远方和吵闹环境, 使问题更加严重, 导致精确度大幅下降 。 在本文中, 我们为语音指令识别提供了一个多频道 ConmMixer 。 新的结构在多频道音频设置中引入了另一个音频混合频道, 用于频道音频互动, 以便以更高效的计算实现更好的噪音- 紫外线特征 。 此外, 我们提议了一个基于机器人的认知部分, 通过在潜在地貌预测空间为系统配备更多的空间几何信息来增强系统。 我们使用新的 MISP 挑战 2021 数据集来评估我们的模型 。 我们的模型比官方基线显著改进, 竞争得分( 0.152 ), 在原始麦克风阵列输入上获得了 63% ( 0.126 ) 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员