We provide new communication-efficient distributed interactive proofs for planarity. The notion of a \emph{distributed interactive proof (DIP)} was introduced by Kol, Oshman, and Saxena (PODC 2018). In a DIP, the \emph{prover} is a single centralized entity whose goal is to prove a certain claim regarding an input graph $G$. To do so, the prover communicates with a distributed \emph{verifier} that operates concurrently on all $n$ nodes of $G$. A DIP is measured by the amount of prover-verifier communication it requires. Namely, the goal is to design a DIP with a small number of interaction rounds and a small \emph{proof size}, i.e., a small amount of communication per round. Our main result is an $O(\log ^{*}n)$-round DIP protocol for embedded planarity and planarity with a proof size of $O(1)$ and $O(\lceil\log \Delta/\log ^{*}n\rceil)$, respectively. In fact, this result can be generalized as follows. For any $1\leq r\leq \log^{*}n$, there exists an $O(r)$-round protocol for embedded planarity and planarity with a proof size of $O(\log ^{(r)}n)$ and $O(\log ^{(r)}n+\log \Delta /r)$, respectively.


翻译:我们为平面性判定问题提出了新型通信高效的分布式交互证明。\emph{分布式交互证明(DIP)}的概念由Kol、Oshman和Saxena(PODC 2018)首次提出。在DIP框架中,\emph{证明者}是集中式的单一实体,其目标是证明关于输入图$G$的特定性质。为此,证明者需与分布式\emph{验证者}进行通信,该验证者同时在$G$的所有$n$个节点上运行。DIP的性能通过证明者-验证者间所需的通信量来衡量,具体目标是设计具有较少交互轮次和较小\emph{证明规模}(即每轮通信量)的DIP协议。我们的核心成果是:针对嵌入平面性和平面性判定问题,分别构建了证明规模为$O(1)$和$O(\lceil\log \Delta/\log ^{*}n\rceil)$的$O(\log ^{*}n)$轮DIP协议。该结果可进一步推广为:对于任意$1\leq r\leq \log^{*}n$,存在针对嵌入平面性和平面性判定的$O(r)$轮协议,其证明规模分别为$O(\log ^{(r)}n)$和$O(\log ^{(r)}n+\log \Delta /r)$。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员