In scientific simulations, observations, and experiments, the cost of transferring data to and from disk and across networks has become a significant bottleneck that particularly impacts subsequent data analysis and visualization. To address this challenge, compression techniques have been widely adopted. However, traditional lossy compression approaches often require setting error tolerances conservatively to respect the numerical sensitivities of a wide variety of post hoc data analyses, some of which may not even be known a priori. Progressive data compression and retrieval has emerged as a solution, allowing for the adaptive handling of compressed data according to the needs of a given post-processing task. However, few analysis algorithms natively support progressive data processing, and adapting compression techniques, file formats, client/server frameworks, and APIs to support progressivity can be challenging. This work presents a general framework that supports progressive-precision data queries independently of the underlying data compressor or number representation. Our approach is based on a multiple-component representation that successively, with each new component, reduces the error between the original and compressed field, allowing each field in the progressive sequence to be expressed as a partial sum of components. We have implemented our approach on top of four popular scientific data compressors and have evaluated its behavior on several real-world data sets from the SDRBench collection. Numerical results indicate that our framework is effective in terms of accuracy compared to each of the standalone compressors it builds upon. In addition, (de)compression time is proportional to the number and granularity of components. Finally, our framework allows for fully lossless compression using lossy compressors when a sufficient number of components are employed.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员