Impressive performance of Transformer has been attributed to self-attention, where dependencies between entire input in a sequence are considered at every position. In this work, we reform the neural $n$-gram model, which focuses on only several surrounding representations of each position, with the multi-head mechanism as in Vaswani et al.(2017). Through experiments on sequence-to-sequence tasks, we show that replacing self-attention in Transformer with multi-head neural $n$-gram can achieve comparable or better performance than Transformer. From various analyses on our proposed method, we find that multi-head neural $n$-gram is complementary to self-attention, and their combinations can further improve performance of vanilla Transformer.


翻译:变异器的惊人性能被归因于自省, 每一个位置都考虑整个输入序列之间的依赖性。 在这项工作中,我们改革神经元(n$-gram)模型,该模型只关注每个位置周围的几个代表,多头机制如Vaswani等人( 2017年) 。 通过按顺序排列任务实验,我们发现,用多头神经元( nual $- gram) 取代变异器中的自我关注可以比变异器取得可比或更好的性能。 根据对我们拟议方法的各种分析,我们发现多头神经元( $n$- gram) 是对自我关注的补充, 它们的组合可以进一步改善香草变异器的性能。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月15日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员