We investigate Gaussian Universality for data distributions generated via diffusion models. By Gaussian Universality we mean that the test error of a generalized linear model $f(\mathbf{W})$ trained for a classification task on the diffusion data matches the test error of $f(\mathbf{W})$ trained on the Gaussian Mixture with matching means and covariances per class.In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. As a corollary, the analysis of the test error for linear classifiers can be reduced to Gaussian data from diffusion-generated data. Analysing the performance of models trained on synthetic data is a pertinent problem due to the surge of methods such as \cite{sehwag2024stretchingdollardiffusiontraining}. Moreover, we show that, for any $1$- Lipschitz scalar function $\phi$, $\phi(\mathbf{x})$ is close to $\mathbb{E} \phi(\mathbf{x})$ with high probability for $\mathbf{x}$ sampled from the conditional diffusion model corresponding to each class. Finally, we note that current approaches for proving universality do not apply to diffusion-generated data as the covariance matrices of the data tend to have vanishing minimum singular values, contrary to the assumption made in the literature. This leaves extending previous mathematical universality results as an intriguing open question.


翻译:我们研究了通过扩散模型生成的数据分布的高斯普适性。高斯普适性是指,在扩散数据上为分类任务训练的广义线性模型 $f(\mathbf{W})$ 的测试误差,与在具有匹配的类均值和协方差的高斯混合模型上训练的 $f(\mathbf{W})$ 的测试误差相匹配。换言之,在线性设定下,测试误差仅取决于扩散生成数据的一阶和二阶统计量。作为推论,线性分类器测试误差的分析可以从扩散生成数据简化为高斯数据。由于诸如 \cite{sehwag2024stretchingdollardiffusiontraining} 等方法的大量涌现,分析在合成数据上训练的模型性能成为一个相关问题。此外,我们证明,对于任意 $1$-Lipschitz 标量函数 $\phi$,从对应于每个类别的条件扩散模型中采样的 $\mathbf{x}$,其 $\phi(\mathbf{x})$ 以高概率接近 $\mathbb{E} \phi(\mathbf{x})$。最后,我们注意到,当前证明普适性的方法不适用于扩散生成的数据,因为数据的协方差矩阵往往具有趋于零的最小奇异值,这与文献中的假设相反。这使得扩展先前的数学普适性结果成为一个引人深思的开放性问题。

0
下载
关闭预览

相关内容

人类接受高层次教育、进行原创性研究的场所。 现在的大学一般包括一个能授予硕士和博士学位的研究生院和数个专业学院,以及能授予学士学位的一个本科生院。大学还包括高等专科学校
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
29+阅读 · 2023年2月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员