Digital data collected over the decades and data currently being produced with use of information technology is vastly the unlabeled data or data without description. The unlabeled data is relatively easy to acquire but expensive to label even with use of domain experts. Most of the recent works focus on use of active learning with uncertainty metrics measure to address this problem. Although most uncertainty selection strategies are very effective, they fail to take informativeness of the unlabeled instances into account and are prone to querying outliers. In order to address these challenges we propose an hybrid approach of computing both the uncertainty and informativeness of an instance, then automaticaly label the computed instances using budget annotator. To reduce the annotation cost, we employ the state-of-the-art pre-trained models in order to avoid querying information already contained in those models. Our extensive experiments on different sets of datasets demonstrate the efficacy of the proposed approach.


翻译:数十年来收集的数字数据和目前利用信息技术制作的数据在很大程度上是未贴标签的数据或没有描述的数据。即使使用域专家,未贴标签的数据相对容易获得,但标签费也比较高。最近大部分工作的重点是利用积极学习,采用不确定的衡量尺度衡量不确定性,以解决这一问题。虽然大多数不确定选择战略都非常有效,但它们没有考虑到未贴标签实例的信息,而且容易查询外部线。为了应对这些挑战,我们建议采用混合方法,既计算一个实例的不确定性和信息性,又使用预算说明器自动标出计算的情况。为降低注解成本,我们采用最先进的预先培训模型,以避免查询这些模型中已经包含的信息。我们对不同数据集的广泛实验显示了拟议方法的有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
10+阅读 · 2021年11月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员