A novel formulation of the clustering problem is introduced in which the task is expressed as an estimation problem, where the object to be estimated is a function which maps a point to its distribution of cluster membership. Unlike existing approaches which implicitly estimate such a function, like Gaussian Mixture Models (GMMs), the proposed approach bypasses any explicit modelling assumptions and exploits the flexible estimation potential of nonparametric smoothing. An intuitive approach for selecting the tuning parameters governing estimation is provided, which allows the proposed method to automatically determine both an appropriate level of flexibility and also the number of clusters to extract from a given data set. Experiments on a large collection of publicly available data sets are used to document the strong performance of the proposed approach, in comparison with relevant benchmarks from the literature. R code to implement the proposed approach is available from https://github.com/DavidHofmeyr/CNS


翻译:本文提出了一种新颖的聚类问题表述方式,将聚类任务转化为一个估计问题,其目标估计对象是将数据点映射至其簇隶属度分布的函数。与高斯混合模型等现有方法(此类方法隐式地估计此类函数)不同,所提出的方法绕过了任何显式的建模假设,并利用了非参数平滑在估计方面的灵活潜力。本文提供了一种直观的方法来选择控制估计的调优参数,这使得所提出的方法能够自动确定适当的灵活性水平,并从给定数据集中自动提取合适的簇数量。通过在大量公开可用数据集上进行实验,我们记录了所提出方法的优异性能,并与文献中的相关基准方法进行了比较。实现所提出方法的R代码可从 https://github.com/DavidHofmeyr/CNS 获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
29+阅读 · 2023年1月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
29+阅读 · 2023年1月12日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员