We proposed Lavida-O, a unified multi-modal Masked Diffusion Model (MDM) capable of image understanding and generation tasks. Unlike existing multimodal diffsion language models such as MMaDa and Muddit which only support simple image-level understanding tasks and low-resolution image generation, Lavida-O exhibits many new capabilities such as object grounding, image-editing, and high-resolution (1024px) image synthesis. It is also the first unified MDM that uses its understanding capabilities to improve image generation and editing results through planning and iterative self-reflection. To allow effective and efficient training and sampling, Lavida-O ntroduces many novel techniques such as Elastic Mixture-of-Transformer architecture, universal text conditioning, and stratified sampling. \ours~achieves state-of-the-art performance on a wide range of benchmarks such as RefCOCO object grounding, GenEval text-to-image generation, and ImgEdit image editing, outperforming existing autoregressive and continuous diffusion models such as Qwen2.5-VL and FluxKontext-dev, while offering considerable speedup at inference.


翻译:我们提出了Lavida-O,一种能够执行图像理解与生成任务的统一多模态掩码扩散模型。与仅支持简单图像级理解任务和低分辨率图像生成的现有多模态扩散语言模型(如MMaDa和Muddit)不同,Lavida-O展现出多项新能力,包括对象定位、图像编辑以及高分辨率(1024像素)图像合成。它也是首个利用其理解能力,通过规划与迭代自反思机制来提升图像生成与编辑效果的统一掩码扩散模型。为实现高效训练与采样,Lavida-O引入了多项创新技术,如弹性混合Transformer架构、通用文本条件机制和分层采样策略。本模型在RefCOCO对象定位、GenEval文本到图像生成和ImgEdit图像编辑等广泛基准测试中取得了最先进的性能,超越了现有的自回归与连续扩散模型(如Qwen2.5-VL和FluxKontext-dev),同时在推理阶段实现了显著的加速。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员