While generative AI systems have gained popularity in diverse applications, their potential to produce harmful outputs limits their trustworthiness and usability in different applications. Recent years have seen growing interest in engaging diverse AI users in auditing generative AI that might impact their lives. To this end, we propose MIRAGE as a web-based tool where AI users can compare outputs from multiple AI text-to-image (T2I) models by auditing AI-generated images, and report their findings in a structured way. We used MIRAGE to conduct a preliminary user study with five participants and found that MIRAGE users could leverage their own lived experiences and identities to surface previously unnoticed details around harmful biases when reviewing multiple T2I models' outputs compared to reviewing only one.


翻译:尽管生成式人工智能系统已在多种应用中普及,但其产生有害输出的潜力限制了其在各类应用中的可信度与可用性。近年来,让不同人工智能用户参与审计可能影响其生活的生成式人工智能的兴趣日益增长。为此,我们提出MIRAGE作为一种基于网络的工具,使人工智能用户能够通过审计人工智能生成的图像,比较多个AI文本到图像(T2I)模型的输出,并以结构化方式报告其发现。我们利用MIRAGE对五名参与者进行了初步用户研究,发现相较于仅审查单一模型输出,MIRAGE用户能够利用自身的生活经验和身份背景,在审查多个T2I模型输出时揭示出先前未被注意到的有害偏见细节。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员