The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77% and 0.40% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.


翻译:触发弧旅行商问题(TA-TSP)通过引入动态弧成本扩展了经典TSP,该成本在遍历特定“触发”弧时发生变化,可用于建模具有可压缩存储系统的仓库作业等场景。本文提出一种基于GRASP的元启发式算法,将多种构建启发式与多邻域局部搜索相结合。构建阶段采用混合整数规划(MIP)技术将TA-TSP转化为一系列定制化的TSP实例,改进阶段则应用2-Opt、Swap和Relocate算子。在MESS 2024竞赛实例上的计算实验表明,在60秒时限内,算法相对于已知最优解的平均最优性差距为0.77%和0.40%。在较小的合成数据集上,该方法在相同时间限制下获得的解比Gurobi求解器优11.3%。该算法在MESS 2024竞赛中位列前三,证明了其在具有状态相关旅行成本的实时路径规划应用中的适用性。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2023年8月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员