Tensors with unit Frobenius norm are fundamental objects in many fields, including scientific computing and quantum physics, which are able to represent normalized eigenvectors and pure quantum states. While the tensor train decomposition provides a powerful low-rank format for tackling high-dimensional problems, it does not intrinsically enforce the unit-norm constraint. To address this, we introduce the normalized tensor train (NTT) decomposition, which aims to approximate a tensor by unit-norm tensors in tensor train format. The low-rank structure of NTT decomposition not only saves storage and computational cost but also preserves the underlying unit-norm structure. We prove that the set of fixed-rank NTT tensors forms a smooth manifold, and the corresponding Riemannian geometry is derived, paving the way for geometric methods. We propose NTT-based methods for low-rank tensor recovery, high-dimensional eigenvalue problem, estimation of stabilizer rank, and calculation of the minimum output R\'enyi 2-entropy of quantum channels. Numerical experiments demonstrate the superior efficiency and scalability of the proposed NTT-based methods.


翻译:具有单位Frobenius范数的张量是许多领域的基本对象,包括科学计算和量子物理,它们能够表示归一化特征向量和纯量子态。虽然张量列车分解为解决高维问题提供了强大的低秩格式,但其本身并不强制执行单位范数约束。为此,我们引入了归一化张量列车(NTT)分解,旨在通过张量列车格式中的单位范数张量来逼近一个张量。NTT分解的低秩结构不仅节省了存储和计算成本,还保留了基础的单位范数结构。我们证明了固定秩NTT张量的集合形成了一个光滑流形,并推导了相应的黎曼几何,为几何方法铺平了道路。我们提出了基于NTT的方法,用于低秩张量恢复、高维特征值问题、稳定子秩的估计以及量子信道的最小输出Rényi 2-熵的计算。数值实验证明了所提出的基于NTT的方法具有卓越的效率和可扩展性。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员