Unmanned aerial vehicles (UAVs) with integrated sensing, computation, and communication (ISCC) capabilities have become key enablers of next-generation wireless networks. Federated edge learning (FEL) leverages UAVs as mobile learning agents to collect data, perform local model updates, and contribute to global model aggregation. However, existing UAV-assisted FEL systems face critical challenges, including excessive computational demands, privacy risks, and inefficient communication, primarily due to the requirement for full-model training on resource-constrained UAVs. To deal with aforementioned challenges, we propose Split Federated Learning for UAV-Enabled ISCC (SFLSCC), a novel framework that integrates split federated learning (SFL) into UAV-assisted FEL. SFLSCC optimally partitions model training between UAVs and edge servers, significantly reducing UAVs' computational burden while preserving data privacy. We conduct a theoretical analysis of UAV deployment, split point selection, data sensing volume, and client-side aggregation frequency, deriving closed-form upper bounds for the convergence gap. Based on these insights, we conceive a joint optimization problem to minimize the energy consumption required to achieve a target model accuracy. Given the non-convex nature of the problem, we develop a low-complexity algorithm to efficiently determine UAV deployment, split point selection, and communication frequency. Extensive simulations on a target motion recognition task validate the effectiveness of SFLSCC, demonstrating superior convergence performance and energy efficiency compared to baseline methods.


翻译:具备集成感知、计算与通信能力的无人机已成为下一代无线网络的关键使能技术。联邦边缘学习利用无人机作为移动学习代理,收集数据、执行本地模型更新并参与全局模型聚合。然而,现有无人机辅助的联邦边缘学习系统面临严峻挑战,包括过高的计算需求、隐私风险及低效通信,这主要源于资源受限的无人机需进行完整模型训练。为应对上述挑战,本文提出面向无人机集成感知、计算与通信的分割联邦学习框架,该创新框架将分割联邦学习集成至无人机辅助的联邦边缘学习中。该框架通过在无人机与边缘服务器间优化划分模型训练任务,显著降低无人机的计算负担,同时保障数据隐私。我们对无人机部署、分割点选择、数据感知量及客户端聚合频率进行了理论分析,推导出收敛间隙的闭式上界。基于这些理论见解,我们构建了联合优化问题以最小化达到目标模型精度所需的能耗。鉴于该问题的非凸特性,我们开发了一种低复杂度算法,可高效确定无人机部署策略、分割点选择方案及通信频率。在目标运动识别任务上的大量仿真验证了所提框架的有效性,其收敛性能与能量效率均优于基线方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员