We study the eigenvalue distribution and resolvent of a Kronecker-product random matrix model $A \otimes I_{n \times n}+I_{n \times n} \otimes B+\Theta \otimes \Xi \in \mathbb{C}^{n^2 \times n^2}$, where $A,B$ are independent Wigner matrices and $\Theta,\Xi$ are deterministic and diagonal. For fixed spectral arguments, we establish a quantitative approximation for the Stieltjes transform by that of an approximating free operator, and a diagonal deterministic equivalent approximation for the resolvent. We further obtain sharp estimates in operator norm for the $n \times n$ resolvent blocks, and show that off-diagonal resolvent entries fall on two differing scales of $n^{-1/2}$ and $n^{-1}$ depending on their locations in the Kronecker structure. Our study is motivated by consideration of a matrix-valued least-squares optimization problem $\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2}\|XA+BX\|_F^2+\frac{1}{2}\sum_{ij} \xi_i\theta_j x_{ij}^2$ subject to a linear constraint. For random instances of this problem defined by Wigner inputs $A,B$, our analyses imply an asymptotic characterization of the minimizer $X$ and its associated minimum objective value as $n \to \infty$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月15日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员