Cyber attacks threaten economic interests, critical infrastructure, and public health and safety. To counter this, entities adopt cyber threat hunting, a proactive approach that involves formulating hypotheses and searching for attack patterns within organisational networks. Automating cyber threat hunting presents challenges, particularly in generating hypotheses, as it is a manually created and confirmed process, making it time-consuming. To address these challenges, we introduce APThreatHunter, an automated threat hunting solution that generates hypotheses with minimal human intervention, eliminating analyst bias and reducing time and cost. This is done by presenting possible risks based on the system's current state and a set of indicators to indicate whether any of the detected risks are happening or not. We evaluated APThreatHunter using real-world Android malware samples, and the results revealed the practicality of using automated planning for goal hypothesis generation in cyber threat hunting activities.


翻译:网络攻击威胁着经济利益、关键基础设施以及公共卫生与安全。为应对此威胁,各组织采用网络威胁狩猎这一主动防御方法,其涉及提出假设并在组织网络内搜索攻击模式。自动化网络威胁狩猎面临挑战,特别是在生成假设方面,因为这是一个手动创建和确认的过程,耗时费力。为解决这些挑战,我们提出了APThreatHunter,一种自动化威胁狩猎解决方案,能够以最少的人工干预生成假设,消除分析员偏见并降低时间和成本。该方案通过基于系统当前状态和一组指示器来呈现潜在风险,以指示任何已检测风险是否正在发生。我们使用真实世界的Android恶意软件样本对APThreatHunter进行了评估,结果表明在网络威胁狩猎活动中使用自动化规划进行目标假设生成具有实际可行性。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员