We show how to quantify scalability with the Universal Scalability Law (USL) by applying it to performance measurements of memcached, J2EE, and Weblogic on multi-core platforms. Since commercial multicores are essentially black-boxes, the accessible performance gains are primarily available at the application level. We also demonstrate how our methodology can identify the most significant performance tuning opportunities to optimize application scalability, as well as providing an easy means for exploring other aspects of the multi-core system design space.


翻译:我们通过在多核心平台上对混凝土、J2EE和Weblogic的性能测量应用通用可缩放法(USL),展示了如何量化可缩放性。 由于商业多核基本上都是黑箱,可获取的绩效收益主要在应用层面。 我们还展示了我们的方法如何确定最重要的绩效调整机会,以优化应用可缩放性,并为探索多核心系统设计空间的其他方面提供简易手段。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
132+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员