In the past few years, intelligent agents powered by large language models (LLMs) have achieved remarkable progress in performing complex tasks. These LLM-based agents receive queries as tasks and decompose them into various subtasks via the equipped LLMs to guide the action of external entities (\eg{}, tools, AI-agents) to answer the questions from users. Empowered by their exceptional capabilities of understanding and problem-solving, they are widely adopted in labor-intensive sectors including healthcare, finance, code completion, \etc{} At the same time, there are also concerns about the potential misuse of these agents, prompting the built-in safety guards from service providers. To circumvent the built-in guidelines, the prior studies proposed a multitude of attacks including memory poisoning, jailbreak, and prompt injection. These studies often fail to maintain effectiveness across safety filters employed by agents due to the restricted privileges and the harmful semantics in queries. In this paper, we introduce \Name, a novel hijacking attack to manipulate the action plans of black-box agent system. \Name first collects the action-aware memory through prompt theft from long-term memory. It then leverages the internal memory retrieval mechanism of the agent to provide an erroneous context. The huge gap between the latent spaces of the retriever and safety filters allows our method to bypass the detection easily. Extensive experimental results demonstrate the effectiveness of our apporach (\eg{}, 99.67\% ASR). Besides, our approach achieved an average bypass rate of 92.7\% for safety filters.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员