The swift spread of fake news and disinformation campaigns poses a significant threat to public trust, political stability, and cybersecurity. Traditional Cyber Threat Intelligence (CTI) approaches, which rely on low-level indicators such as domain names and social media handles, are easily evaded by adversaries who frequently modify their online infrastructure. To address these limitations, we introduce a novel CTI framework that focuses on high-level, semantic indicators derived from recurrent narratives and relationships of disinformation campaigns. Our approach extracts structured CTI indicators from unstructured disinformation content, capturing key entities and their contextual dependencies within fake news using Large Language Models (LLMs). We further introduce FakeCTI, the first dataset that systematically links fake news to disinformation campaigns and threat actors. To evaluate the effectiveness of our CTI framework, we analyze multiple fake news attribution techniques, spanning from traditional Natural Language Processing (NLP) to fine-tuned LLMs. This work shifts the focus from low-level artifacts to persistent conceptual structures, establishing a scalable and adaptive approach to tracking and countering disinformation campaigns.


翻译:虚假新闻与虚假信息活动的迅速传播对公众信任、政治稳定和网络安全构成了重大威胁。传统的网络威胁情报方法依赖于域名和社交媒体账号等低层级指标,极易被频繁变更其在线基础设施的对手规避。为应对这些局限,我们提出了一种新颖的CTI框架,该框架专注于从虚假信息活动的反复叙事和关系中提取高层次语义指标。我们的方法利用大型语言模型从非结构化的虚假信息内容中提取结构化的CTI指标,捕获假新闻中的关键实体及其上下文依赖关系。我们进一步引入了FakeCTI,这是首个系统地将假新闻与虚假信息活动及威胁行为者关联起来的数据集。为评估我们CTI框架的有效性,我们分析了多种假新闻溯源技术,涵盖从传统自然语言处理到微调LLM的方法。这项工作将焦点从低层级技术痕迹转向持久的概念结构,建立了一种可扩展且自适应的追踪与对抗虚假信息活动的方法。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员