The steady growth of artificial intelligence (AI) has accelerated in the recent years, facilitated by the development of sophisticated models such as large language models and foundation models. Ensuring robust and reliable power infrastructures is fundamental to take advantage of the full potential of AI. However, AI data centres are extremely hungry for power, putting the problem of their power management in the spotlight, especially with respect to their impact on environment and sustainable development. In this work, we investigate the capacity and limits of solutions based on an innovative approach for the power management of AI data centres, i.e., making part of the input power as dynamic as the power used for data-computing functions. The performance of passive and active devices are quantified and compared in terms of computational gain, energy efficiency, reduction of capital expenditure, and management costs by analysing power trends from multiple data platforms worldwide. This strategy, which identifies a paradigm shift in the AI data centre power management, has the potential to strongly improve the sustainability of AI hyperscalers, enhancing their footprint on environmental, financial, and societal fields.


翻译:近年来,随着大型语言模型和基础模型等复杂模型的发展,人工智能(AI)呈现稳步增长态势。构建稳健可靠的电力基础设施是充分发挥AI潜力的基础。然而,AI数据中心对电力需求极高,其电力管理问题——特别是对环境与可持续发展的影响——已成为关注焦点。本研究探讨了一种基于创新方法的AI数据中心电力管理解决方案的潜力与局限:该方法使部分输入功率能够像数据计算功能所用功率一样动态变化。通过分析全球多数据平台的功率趋势,我们量化比较了被动式与主动式设备在计算增益、能效、资本支出削减及管理成本等方面的性能。这一策略标志着AI数据中心电力管理的范式转变,有望显著提升超大规模AI系统的可持续性,并改善其在环境、经济和社会领域的综合效益。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员