Transformers have demonstrated strong potential in offline reinforcement learning (RL) by modeling trajectories as sequences of return-to-go, states, and actions. However, existing approaches such as the Decision Transformer(DT) and its variants suffer from redundant tokenization and quadratic attention complexity, limiting their scalability in real-time or resource-constrained settings. To address this, we propose a Unified Token Representation (UTR) that merges return-to-go, state, and action into a single token, substantially reducing sequence length and model complexity. Theoretical analysis shows that UTR leads to a tighter Rademacher complexity bound, suggesting improved generalization. We further develop two variants: UDT and UDC, built upon transformer and gated CNN backbones, respectively. Both achieve comparable or superior performance to state-of-the-art methods with markedly lower computation. These findings demonstrate that UTR generalizes well across architectures and may provide an efficient foundation for scalable control in future large decision models.


翻译:Transformer 在离线强化学习(RL)中展现出强大潜力,其方法是将轨迹建模为回报-目标、状态和动作的序列。然而,现有方法如决策 Transformer(DT)及其变体存在令牌化冗余和注意力二次复杂度的问题,这限制了它们在实时或资源受限环境中的可扩展性。为解决此问题,我们提出了一种统一令牌表示(UTR),将回报-目标、状态和动作合并为单个令牌,从而显著减少了序列长度和模型复杂度。理论分析表明,UTR 带来了更紧的 Rademacher 复杂度上界,意味着泛化能力得到提升。我们进一步开发了两种变体:UDT 和 UDC,分别基于 Transformer 和门控 CNN 主干构建。两者均以显著更低的计算量实现了与最先进方法相当或更优的性能。这些发现表明,UTR 在不同架构间具有良好的泛化能力,并可能为未来大规模决策模型中的可扩展控制提供高效基础。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员