Inadequate availability of patient information is a major cause for medical errors and affects costs in healthcare. Traditional approaches to information integration in healthcare do not solve the problem. Applying a document-oriented paradigm to systems integration enables inter-institutional information exchange in healthcare. The goal of the proposed architecture is to provide information exchange between strict autonomous healthcare institutions, bridging the gap between primary and secondary care. In a long-term healthcare data distribution scenario, the patient has to maintain sovereignty over any personal health information. Thus, the traditional publish-subscribe architecture is extended by a phase of human mediation within the data flow. DEUS essentially decouples the roles of information author and information publisher into distinct actors, resulting in a triangular data flow. The interaction scenario will be motivated. The significance of human mediation will be discussed. DEUS provides a carefully distinguished actor and role model for mediated pub-sub. The data flow between the participants is factored into distinct phases of information interchange. The artefact model is decomposed into role-dependent constituent parts. Both a domain specific (healthcare) terminology and a generic terminology is provided. From a technical perspective, the system design is presented. The sublayer for network transfer will be highlighted as well as the subsystem for human-machine interaction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月12日
Arxiv
16+阅读 · 2021年3月2日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
16+阅读 · 2019年4月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年1月12日
Arxiv
16+阅读 · 2021年3月2日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
16+阅读 · 2019年4月4日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员