Sublinear time quantum algorithms have been established for many fundamental problems on strings. This work demonstrates that new, faster quantum algorithms can be designed when the string is highly compressible. We focus on two popular and theoretically significant compression algorithms -- the Lempel-Ziv77 algorithm (LZ77) and the Run-length-encoded Burrows-Wheeler Transform (RL-BWT), and obtain the results below. We first provide a quantum algorithm running in $\tilde{O}(\sqrt{zn})$ time for finding the LZ77 factorization of an input string $T[1..n]$ with $z$ factors. Combined with multiple existing results, this yields an $\tilde{O}(\sqrt{rn})$ time quantum algorithm for finding the RL-BWT encoding with $r$ BWT runs. Note that $r = \tilde{\Theta}(z)$. We complement these results with lower bounds proving that our algorithms are optimal (up to polylog factors). Next, we study the problem of compressed indexing, where we provide a $\tilde{O}(\sqrt{rn})$ time quantum algorithm for constructing a recently designed $\tilde{O}(r)$ space structure with equivalent capabilities as the suffix tree. This data structure is then applied to numerous problems to obtain sublinear time quantum algorithms when the input is highly compressible. For example, we show that the longest common substring of two strings of total length $n$ can be computed in $\tilde{O}(\sqrt{zn})$ time, where $z$ is the number of factors in the LZ77 factorization of their concatenation. This beats the best known $\tilde{O}(n^\frac{2}{3})$ time quantum algorithm when $z$ is sufficiently small.


翻译:已经为字符串上的许多根本性问题建立了子线内时间算法。 这项工作表明, 当字符串高度压缩时, 可以设计出新的、 更快的量算法。 我们关注两个流行和理论上重要的压缩算法 -- Lempel- Ziv77 算法( LZ77 ) 和 Run- encod Burrows- Wheeler 变换( RL- BWT), 并获得以下结果。 我们首先提供以$tilde{ O} (sqrt{z} 美元运行的量算法。 我们用较低的界限来补充这些结果, 以证明我们的算法是最佳的 $T[1. n] 美元和 $z$。 结合多种现有结果, 这会产生 $Otreqr\ translation 结构的美元- BWT 编码。 注意, 当我们用 $rqrdal_ transal=

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
20+阅读 · 2021年9月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员