Social commerce platforms are emerging businesses where producers sell products through re-sellers who advertise the products to other customers in their social network. Due to the increasing popularity of this business model, thousands of small producers and re-sellers are starting to depend on these platforms for their livelihood; thus, it is important to provide fair earning opportunities to them. The enormous product space in such platforms prohibits manual search, and motivates the need for recommendation algorithms to effectively allocate product exposure and, consequently, earning opportunities. In this work, we focus on the fairness of such allocations in social commerce platforms and formulate the problem of assigning products to re-sellers as a fair division problem with indivisible items under two-sided cardinality constraints, wherein each product must be given to at least a certain number of re-sellers and each re-seller must get a certain number of products. Our work systematically explores various well-studied benchmarks of fairness -- including Nash social welfare, envy-freeness up to one item (EF1), and equitability up to one item (EQ1) -- from both theoretical and experimental perspectives. We find that the existential and computational guarantees of these concepts known from the unconstrained setting do not extend to our constrained model. To address this limitation, we develop a mixed-integer linear program and other scalable heuristics that provide near-optimal approximation of Nash social welfare in simulated and real social commerce datasets. Overall, our work takes the first step towards achieving provable fairness alongside reasonable revenue guarantees on social commerce platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员