Since statistical guarantees for neural networks are usually restricted to global optima of intricate objective functions, it is unclear whether these theories explain the performances of actual outputs of neural network pipelines. The goal of this paper is, therefore, to bring statistical theory closer to practice. We develop statistical guarantees for shallow linear neural networks that coincide up to logarithmic factors with the global optima but apply to stationary points and the points nearby. These results support the common notion that neural networks do not necessarily need to be optimized globally from a mathematical perspective. We then extend our statistical guarantees to shallow ReLU neural networks, assuming the first layer weight matrices are nearly identical for the stationary network and the target. More generally, despite being limited to shallow neural networks for now, our theories make an important step forward in describing the practical properties of neural networks in mathematical terms.


翻译:由于神经网络的统计保证通常仅限于复杂目标函数的全局最优解,这些理论是否能够解释神经网络实际输出性能尚不明确。因此,本文的目标是将统计理论更贴近实践。我们为浅层线性神经网络建立了统计保证,这些保证在忽略对数因子后与全局最优解一致,但适用于驻点及其邻近点。这些结果从数学角度支持了神经网络无需全局优化的普遍观点。随后,我们将统计保证扩展至浅层ReLU神经网络,假设驻点网络与目标网络的第一层权重矩阵近乎相同。更广泛而言,尽管目前仅限于浅层神经网络,我们的理论在利用数学术语描述神经网络实际特性方面迈出了重要一步。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
51+阅读 · 2021年5月19日
专知会员服务
20+阅读 · 2020年12月9日
专知会员服务
24+阅读 · 2020年9月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
51+阅读 · 2021年5月19日
专知会员服务
20+阅读 · 2020年12月9日
专知会员服务
24+阅读 · 2020年9月15日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员