We revisit the Hierarchical Poincar\'{e}-Steklov (HPS) method for the Poisson equation using standard Q1 finite elements, building on the original in work on HPS of Martinsson from 2013. While corner degrees of freedom were implicitly handled in that work, subsequent spectral-element implementations have typically avoided them. In Q1-FEM, however, corner coupling cannot be factored out, and we show how the HPS merge procedure naturally accommodates it when corners are enclosed by elements. This clarification bridges a conceptual gap between algebraic Schur-complement methods and operator-based formulations, providing a consistent path for the FEM community to adopt HPS to retain the Poincar\'{e}-Steklov interpretation at both continuous and discrete levels.


翻译:我们基于Martinsson于2013年关于分层泊松-斯捷克洛夫方法的原始工作,重新审视了使用标准Q1有限元求解泊松方程的分层泊松-斯捷克洛夫方法。虽然该原始工作中隐含处理了角点自由度,但后续的谱元实现通常回避了它们。然而在Q1有限元中,角点耦合无法被分解,我们展示了当角点被单元包围时,HPS合并过程如何自然地容纳这一耦合。这一阐释弥合了代数舒尔补方法与基于算子的表述之间的概念鸿沟,为有限元社区采用HPS提供了一条连贯的路径,以在连续和离散层面均保持泊松-斯捷克洛夫解释。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员