Monocular omnidirectional visual odometry (OVO) systems leverage 360-degree cameras to overcome field-of-view limitations of perspective VO systems. However, existing methods, reliant on handcrafted features or photometric objectives, often lack robustness in challenging scenarios, such as aggressive motion and varying illumination. To address this, we present 360DVO, the first deep learning-based OVO framework. Our approach introduces a distortion-aware spherical feature extractor (DAS-Feat) that adaptively learns distortion-resistant features from 360-degree images. These sparse feature patches are then used to establish constraints for effective pose estimation within a novel omnidirectional differentiable bundle adjustment (ODBA) module. To facilitate evaluation in realistic settings, we also contribute a new real-world OVO benchmark. Extensive experiments on this benchmark and public synthetic datasets (TartanAir V2 and 360VO) demonstrate that 360DVO surpasses state-of-the-art baselines (including 360VO and OpenVSLAM), improving robustness by 50% and accuracy by 37.5%. Homepage: https://chris1004336379.github.io/360DVO-homepage


翻译:单目全向视觉里程计(OVO)系统利用360度相机来克服透视VO系统的视野限制。然而,现有方法依赖于手工特征或光度目标,在挑战性场景(如剧烈运动和变化光照)中通常缺乏鲁棒性。为解决此问题,我们提出了360DVO,首个基于深度学习的OVO框架。我们的方法引入了一个感知畸变的球面特征提取器(DAS-Feat),它能自适应地从360度图像中学习抗畸变特征。这些稀疏特征块随后被用于在一个新颖的全向可微光束法平差(ODBA)模块中建立有效位姿估计的约束。为了促进在真实场景中的评估,我们还贡献了一个新的真实世界OVO基准。在此基准和公开合成数据集(TartanAir V2 和 360VO)上进行的大量实验表明,360DVO超越了最先进的基线方法(包括360VO和OpenVSLAM),将鲁棒性提高了50%,精度提高了37.5%。主页:https://chris1004336379.github.io/360DVO-homepage

0
下载
关闭预览

相关内容

中国领先的互联网安全服务与软件公司,主营以360安全卫士、360浏览器等为代表的网络安全产品。主要依靠在线广告、互联网增值服务创收。目前,公司PC端产品和服务的月活跃用户为4.42亿,市场渗透率为95%。

2012年8月,公司推出「360 搜索」业务,正式进军搜索引擎市场。作为中国互联网界最受争议的公司,奇虎360先后与腾讯、百度等互联网巨头产生过激烈的产品竞争。

2011年3月,公司以「QIHU」为代码正式登陆纽约证券交易所。

【CVPR2024】ViewDiff: 3D一致的图像生成与文本到图像模型
专知会员服务
30+阅读 · 2024年3月10日
【NeurIPS2022】SparCL:边缘稀疏持续学习
专知会员服务
24+阅读 · 2022年9月22日
专知会员服务
15+阅读 · 2021年9月11日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关VIP内容
【CVPR2024】ViewDiff: 3D一致的图像生成与文本到图像模型
专知会员服务
30+阅读 · 2024年3月10日
【NeurIPS2022】SparCL:边缘稀疏持续学习
专知会员服务
24+阅读 · 2022年9月22日
专知会员服务
15+阅读 · 2021年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员