This work introduces LIMOncello, a tightly coupled LiDAR-Inertial Odometry system that models 6-DoF motion on the $\mathrm{SGal}(3)$ manifold within an iterated error-state Kalman filter backend. Compared to state representations defined on $\mathrm{SO}(3)\times\mathbb{R}^6$, the use of $\mathrm{SGal}(3)$ provides a coherent and numerically stable discrete-time propagation model that helps limit drift in low-observability conditions. LIMOncello also includes a lightweight incremental i-Octree mapping backend that enables faster updates and substantially lower memory usage than incremental kd-tree style map structures, without relying on locality-restricted search heuristics. Experiments on multiple real-world datasets show that LIMOncello achieves competitive accuracy while improving robustness in geometrically sparse environments. The system maintains real-time performance with stable memory growth and is released as an extensible open-source implementation at https://github.com/CPerezRuiz335/LIMOncello.


翻译:本文提出了 LIMOncello,一种紧耦合的激光雷达-惯性里程计系统。该系统在迭代误差状态卡尔曼滤波器后端中,将六自由度运动建模于 $\mathrm{SGal}(3)$ 流形上。与定义在 $\mathrm{SO}(3)\times\mathbb{R}^6$ 上的状态表示相比,使用 $\mathrm{SGal}(3)$ 提供了一个一致且数值稳定的离散时间传播模型,有助于在低可观测性条件下限制漂移。LIMOncello 还包含一个轻量级的增量 i-Octree 建图后端,该后端无需依赖局部受限的搜索启发式方法,即可实现比增量 kd-树式地图结构更快的更新速度和显著更低的内存占用。在多个真实世界数据集上的实验表明,LIMOncello 在保持具有竞争力的精度的同时,提高了在几何稀疏环境中的鲁棒性。该系统保持了实时性能与稳定的内存增长,并已在 https://github.com/CPerezRuiz335/LIMOncello 上发布为可扩展的开源实现。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
16+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员