The increasing adoption of Large Language Models (LLMs) in software engineering education presents both opportunities and challenges. While LLMs offer benefits such as enhanced learning experiences, automated assessments, and personalized tutoring, their integration also raises concerns about academic integrity, student over-reliance, and ethical considerations. In this study, we conducted a preliminary literature review to identify motivators and demotivators for using LLMs in software engineering education. We applied a thematic mapping process to categorize and structure these factors (motivators and demotivators), offering a comprehensive view of their impact. In total, we identified 25 motivators and 30 demotivators, which are further organized into four high-level themes. This mapping provides a structured framework for understanding the factors that influence the integration of LLMs in software engineering education, both positively and negatively. As part of a larger research project, this study serves as a feasibility assessment, laying the groundwork for future systematic literature review and empirical studies. Ultimately, this project aims to develop a framework to assist Finnish higher education institutions in effectively integrating LLMs into software engineering education while addressing potential risks and challenges.


翻译:大型语言模型在软件工程教育中的日益普及既带来了机遇也带来了挑战。LLMs能够提供增强的学习体验、自动化评估和个性化辅导等益处,但其融入也引发了关于学术诚信、学生过度依赖以及伦理考量的担忧。本研究通过初步文献综述,识别了在软件工程教育中使用LLMs的动因与阻碍因素。我们应用主题映射流程对这些因素(动因与阻碍)进行分类和结构化,从而全面呈现其影响。我们共识别出25个动因和30个阻碍因素,并将其进一步归纳为四个高层主题。此映射为理解影响LLMs融入软件工程教育的积极与消极因素提供了一个结构化框架。作为一项更大规模研究项目的一部分,本研究旨在进行可行性评估,为未来的系统文献综述和实证研究奠定基础。最终,本项目旨在开发一个框架,以协助芬兰高等教育机构在有效将LLMs融入软件工程教育的同时,应对潜在的风险与挑战。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员