Dense embedding models have become critical for modern information retrieval, particularly in RAG pipelines, but their performance often degrades when applied to specialized corpora outside their pre-training distribution. To address thi we introduce CustomIR, a framework for unsupervised adaptation of pre-trained language embedding models to domain-specific corpora using synthetically generated query-document pairs. CustomIR leverages large language models (LLMs) to create diverse queries grounded in a known target corpus, paired with LLM-verified hard negatives, eliminating the need for costly human annotation. Experiments on enterprise email and messaging datasets show that CustomIR consistently improves retrieval effectiveness with small models gaining up to 2.3 points in Recall@10. This performance increase allows these small models to rival the performance of much larger alternatives, allowing for cheaper RAG deployments. These results highlight that targeted synthetic fine-tuning offers a scalable and cost-efficient strategy for increasing domain-specific performance.


翻译:密集嵌入模型已成为现代信息检索的关键技术,尤其在RAG(检索增强生成)流程中,但当应用于预训练分布之外的专业语料库时,其性能往往下降。为解决这一问题,我们提出了CustomIR框架,该框架通过使用合成生成的查询-文档对,对预训练语言嵌入模型进行无监督自适应,以适应特定领域语料库。CustomIR利用大型语言模型(LLMs)基于已知目标语料库生成多样化查询,并配对经LLM验证的困难负样本,从而无需昂贵的人工标注。在企业电子邮件和消息数据集上的实验表明,CustomIR持续提升了检索效果,小型模型在Recall@10指标上最高提升了2.3个百分点。这一性能提升使得这些小型模型能够媲美更大规模替代模型的性能,从而降低RAG部署成本。这些结果凸显了定向合成微调为提升领域特定性能提供了一种可扩展且经济高效的策略。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员