Autonomous vehicle (AV) motion planning problems often involve non-convex constraints, which present a major barrier to applying model predictive control (MPC) in real time on embedded hardware. This paper presents an approach for efficiently solving mixed-integer MPC motion planning problems using a hybrid zonotope representation of the obstacle-free space. The MPC optimization problem is formulated as a multi-stage mixed-integer quadratic program (MIQP) using a hybrid zonotope representation of the non-convex constraints. Risk-aware planning is supported by assigning costs to different regions of the obstacle-free space within the MPC cost function. A multi-stage MIQP solver is presented that exploits the structure of the hybrid zonotope constraints. For some hybrid zonotope representations, it is shown that the convex relaxation is tight, i.e., equal to the convex hull. In conjunction with logical constraints derived from the AV motion planning context, this property is leveraged to generate tight quadratic program (QP) sub-problems within a branch-and-bound mixed-integer solver. The hybrid zonotope structure is further leveraged to reduce the number of matrix factorizations that need to be computed within the QP sub-problems. Simulation studies are presented for obstacle-avoidance and risk-aware motion planning problems using polytopic maps and occupancy grids. In most cases, the proposed solver finds the optimal solution an order of magnitude faster than a state-of-the-art commercial solver. Processor-in-the-loop studies demonstrate the utility of the solver for real-time implementations on embedded hardware.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员