Results in interpretability suggest that large vision and language models learn implicit linear encodings when models are biased by in-context prompting. However, the existence of similar linear representations in more general adaptation regimes has not yet been demonstrated. In this work, we develop the concept of a task matrix, a linear transformation from a base to finetuned embedding state. We demonstrate that for vision and text models and ten different datasets, a base model augmented with a task matrix achieves results surpassing linear probes, sometimes approaching finetuned levels. Our results validate the existence of cross-layer linear encodings between pretrained and finetuned architectures. Moreover, we show that a data-based approximation for such encodings is both efficient and generalizable to multiple domains. We make our implementation publicly available.


翻译:可解释性研究结果表明,大型视觉和语言模型在上下文提示的偏置下会学习隐式的线性编码。然而,在更一般的适应机制中是否存在类似的线性表示尚未得到证实。在本研究中,我们提出了任务矩阵的概念,即从基础嵌入状态到微调嵌入状态的线性变换。我们证明,对于视觉和文本模型以及十个不同的数据集,配备任务矩阵的基础模型能够取得超越线性探针的结果,有时甚至接近微调后的性能水平。我们的结果验证了预训练与微调架构之间存在跨层线性编码。此外,我们表明基于数据的此类编码近似方法既高效又可推广至多个领域。我们已公开提供实现代码。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【CVPR2024】非自回归序列到序列的视觉-语言模型
专知会员服务
22+阅读 · 2024年3月5日
【ICML2022】闭式同构变换的时间序列对齐
专知会员服务
12+阅读 · 2022年6月20日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员