Remote medical diagnosis has emerged as a critical and indispensable technique in practical medical systems, where medical data are required to be efficiently compressed and transmitted for diagnosis by either professional doctors or intelligent diagnosis devices. In this process, a large amount of redundant content irrelevant to the diagnosis is subjected to high-fidelity coding, leading to unnecessary transmission costs. To mitigate this, we propose diagnosis-oriented medical image compression, a special semantic compression task designed for medical scenarios, targeting to reduce the compression cost without compromising the diagnosis accuracy. However, collecting sufficient medical data to optimize such a compression system is significantly expensive and challenging due to privacy issues and the lack of professional annotation. In this study, we propose DMIC, the first efficient transfer learning-based codec, for diagnosis-oriented medical image compression, which can be effectively optimized with only few-shot annotated medical examples, by reusing the knowledge in the existing reinforcement learning-based task-driven semantic coding framework, i.e., HRLVSC [1]. Concretely, we focus on tuning only the partial parameters of the policy network for bit allocation within HRLVSC, which enables it to adapt to the medical images. In this work, we validate our DMIC with the typical medical task, Coronary Artery Segmentation. Extensive experiments have demonstrated that our DMIC can achieve 47.594%BD-Rate savings compared to the HEVC anchor, by tuning only the A2C module (2.7% parameters) of the policy network with only 1 medical sample.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员