A generalization of the classical concordance correlation coefficient (CCC) is considered under a three-level design where multiple raters rate every subject over time, and each rater is rating every subject multiple times at each measuring time point. The ratings can be discrete or continuous. A methodology is developed for the interval estimation of the CCC based on a suitable linearization of the model along with an adaptation of the fiducial inference approach. The resulting confidence intervals have satisfactory coverage probabilities and shorter expected widths compared to the interval based on Fisher Z-transformation, even under moderate sample sizes. Two real applications available in the literature are discussed. The first application is based on a clinical trial to determine if various treatments are more effective than a placebo for treating knee pain associated with osteoarthritis. The CCC was used to assess agreement among the manual measurements of the joint space widths on plain radiographs by two raters, and the computer-generated measurements of digitalized radiographs. The second example is on a corticospinal tractography, and the CCC was once again applied in order to evaluate the agreement between a well-trained technologist and a neuroradiologist regarding the measurements of fiber number in both the right and left corticospinal tracts. Other relevant applications of our general approach are highlighted in many areas including artificial intelligence.


翻译:本文在三级设计框架下推广了经典一致性相关系数(CCC),其中多位评估者随时间对每位受试者进行评分,且每位评估者在每个测量时间点对每位受试者进行多次评分。评分可为离散型或连续型。通过结合模型线性化方法与基准推断思想,建立了一种适用于CCC区间估计的方法论。相较于基于Fisher Z变换的置信区间,所得置信区间在中等样本量下仍具有更优的覆盖概率与更短的期望宽度。文中讨论了文献中的两项实际应用:第一项基于评估骨关节炎相关膝痛治疗效果的临床试验,使用CCC分析两位评估者对X光平片关节间隙宽度的人工测量结果与数字化X光片的计算机生成测量结果之间的一致性;第二项涉及皮质脊髓束纤维追踪研究,再次应用CCC评估训练有素的技术人员与神经放射科医师对左右皮质脊髓束纤维数量测量结果的一致性。本文提出的通用方法在人工智能等诸多领域具有广泛的应用前景。

0
下载
关闭预览

相关内容

CCC旨在促进计算复杂性理论的所有领域的研究,研究资源约束下计算模型的绝对和相对功率。典型的模型包括确定性模型、不确定性模型、随机模型和量子模型;均匀模型和非均匀模型;布尔模型、代数模型和连续模型。典型的资源约束包括时间、空间、随机性、程序大小、输入查询、通信和纠缠;最坏情况和平均情况。其他更具体的主题包括:概率和交互证明系统、不可近似性、证明复杂性、描述复杂性以及密码和机器学习的复杂性理论方面。会议还鼓励其他领域的计算机科学和数学的动机计算复杂性理论。官网链接:http://computationalcomplexity.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员