A group of $n$ agents with numerical preferences for each other are to be assigned to the $n$ seats of a dining table. We study two natural topologies:~circular (cycle) tables and panel (path) tables. For a given seating arrangement, an agent's utility is the sum of their preference values towards their (at most two) direct neighbors. An arrangement is envy-free if no agent strictly prefers someone else's seat, and it is stable if no two agents strictly prefer each other's seats. Recently, it was shown that for both paths and cycles it is NP-hard to decide whether an envy-free arrangement exists, even for symmetric binary preferences. In contrast, we show that, if agents come from a bounded number of classes, the problem is solvable in polynomial time for arbitrarily-valued possibly asymmetric preferences, including outputting an arrangement if possible. We also give simpler proofs of the previous hardness results if preferences are allowed to be asymmetric. For stability, it is known that deciding the existence of stable arrangements is NP-hard for both topologies, but only if sufficiently-many numerical values are allowed. As it turns out, even constructing unstable instances can be challenging in certain cases, e.g., binary values. We completely characterize the existence of stable arrangements based on the number of distinct values in the preference matrix and the number of agent classes. We also ask the same question for non-negative values and give an almost-complete characterization, the most interesting outstanding case being that of paths with two-valued non-negative preferences, for which we experimentally find that stable arrangements always exist and prove it under the additional constraint that agents can only swap seats when sitting at most two positions away. We moreover give a polynomial algorithm for determining a stable arrangement assuming a bounded number of classes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月24日
Arxiv
0+阅读 · 2023年11月22日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年11月24日
Arxiv
0+阅读 · 2023年11月22日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员