Unmanned Aerial Vehicles (UAVs) or drones, are increasingly used in search and rescue missions to detect human presence. Existing systems primarily leverage vision-based methods which are prone to fail under low-visibility or occlusion. Drone-based audio perception offers promise but suffers from extreme ego-noise that masks sounds indicating human presence. Existing datasets are either limited in diversity or synthetic, lacking real acoustic interactions, and there are no standardized setups for drone audition. To this end, we present DroneAudioset (The dataset is publicly available at https://huggingface.co/datasets/ahlab-drone-project/DroneAudioSet/ under the MIT license), a comprehensive drone audition dataset featuring 23.5 hours of annotated recordings, covering a wide range of signal-to-noise ratios (SNRs) from -57.2 dB to -2.5 dB, across various drone types, throttles, microphone configurations as well as environments. The dataset enables development and systematic evaluation of noise suppression and classification methods for human-presence detection under challenging conditions, while also informing practical design considerations for drone audition systems, such as microphone placement trade-offs, and development of drone noise-aware audio processing. This dataset is an important step towards enabling design and deployment of drone-audition systems.


翻译:无人机在搜索救援任务中正日益广泛地用于探测人类存在。现有系统主要依赖基于视觉的方法,这些方法在低能见度或遮挡条件下容易失效。基于无人机的音频感知技术展现出潜力,但受到极端自身噪声的干扰,这些噪声会掩盖指示人类存在的声音。现有数据集要么多样性有限,要么是合成的,缺乏真实的声学交互,且尚无标准化的无人机听觉系统设置。为此,我们提出了DroneAudioset(该数据集在MIT许可下公开于https://huggingface.co/datasets/ahlab-drone-project/DroneAudioSet/),这是一个全面的无人机听觉数据集,包含23.5小时带标注的录音,涵盖了从-57.2 dB到-2.5 dB的广泛信噪比范围,涉及多种无人机类型、油门状态、麦克风配置以及环境条件。该数据集支持在挑战性条件下开发和系统评估用于人类存在检测的噪声抑制与分类方法,同时为无人机听觉系统的实际设计考量(如麦克风布局的权衡)以及无人机噪声感知音频处理技术的开发提供参考。该数据集是推动无人机听觉系统设计与部署的重要一步。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员