Federated Learning (FL), a distributed learning paradigm that scales on-device learning collaboratively, has emerged as a promising approach for decentralized AI applications. Local optimization methods such as Federated Averaging (FedAvg) are the most prominent methods for FL applications. Despite their simplicity and popularity, the theoretical understanding of local optimization methods is far from clear. This dissertation aims to advance the theoretical foundation of local methods in the following three directions. First, we establish sharp bounds for FedAvg, the most popular algorithm in Federated Learning. We demonstrate how FedAvg may suffer from a notion we call iterate bias, and how an additional third-order smoothness assumption may mitigate this effect and lead to better convergence rates. We explain this phenomenon from a Stochastic Differential Equation (SDE) perspective. Second, we propose Federated Accelerated Stochastic Gradient Descent (FedAc), the first principled acceleration of FedAvg, which provably improves the convergence rate and communication efficiency. Our technique uses on a potential-based perturbed iterate analysis, a novel stability analysis of generalized accelerated SGD, and a strategic tradeoff between acceleration and stability. Third, we study the Federated Composite Optimization problem, which extends the classic smooth setting by incorporating a shared non-smooth regularizer. We show that direct extensions of FedAvg may suffer from the "curse of primal averaging," resulting in slow convergence. As a solution, we propose a new primal-dual algorithm, Federated Dual Averaging, which overcomes the curse of primal averaging by employing a novel inter-client dual averaging procedure.


翻译:暂无翻译

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2020年12月2日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员