Image copy detection (ICD) aims to determine whether a query image is an edited copy of any image from a reference set. Currently, there are very limited public benchmarks for ICD, while all overlook a critical challenge in real-world applications, i.e., the distraction from hard negative queries. Specifically, some queries are not edited copies but are inherently similar to some reference images. These hard negative queries are easily false recognized as edited copies, significantly compromising the ICD accuracy. This observation motivates us to build the first ICD benchmark featuring this characteristic. Based on existing ICD datasets, this paper constructs a new dataset by additionally adding 100, 000 and 24, 252 hard negative pairs into the training and test set, respectively. Moreover, this paper further reveals a unique difficulty for solving the hard negative problem in ICD, i.e., there is a fundamental conflict between current metric learning and ICD. This conflict is: the metric learning adopts symmetric distance while the edited copy is an asymmetric (unidirectional) process, e.g., a partial crop is close to its holistic reference image and is an edited copy, while the latter cannot be the edited copy of the former (in spite the distance is equally small). This insight results in an Asymmetrical-Similarity Learning (ASL) method, which allows the similarity in two directions (the query <-> the reference image) to be different from each other. Experimental results show that ASL outperforms state-of-the-art methods by a clear margin, confirming that solving the symmetric-asymmetric conflict is critical for ICD.


翻译:图像复制检测 ( ICD) 旨在确定查询图像是否是来自参考集的任何图像的编辑副本 。 目前, ICD 的公共基准非常有限, 而所有都忽略了真实世界应用程序中的一个关键挑战, 即对硬否定查询的分心。 具体地说, 有些查询不是编辑副本, 但本质上与某些参考图像相似。 这些硬否定查询很容易被误认为编辑副本, 大大降低 ICD 的准确性 。 此观察激励我们建立第一个以该特性为特征的 ICD 基准 。 根据现有的 ICD 数据集, 本文构建了一个新的数据集, 在培训和测试集中分别添加了 100, 000 和 24, 252 对硬负对子。 此外, 本文还进一步揭示了解决 ICD 硬否定问题的独特困难, 也就是说, 目前的标准学习与 ICD 的准确性存在根本冲突, 大大降低了 ICD 的准确性 。 这样的冲突是测量性, 。 例如, 部分作物接近于其整体参考图像, 将100, 000 和 24, 252 硬的对对纸分别添加了 。 此外, AS, 也使得 以 正确性 复制了 A- smary 格式 。 。 。 以 以 以 格式 格式 以 格式 以 以 格式 另一种 格式 格式 表示 正确 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
13+阅读 · 2019年4月9日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
20+阅读 · 2018年7月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员