The primary operation in DNNs is the dot product of quantized input activations and weights. Prior works have proposed the design of memory-centric architectures based on the Processing-In-Memory (PIM) paradigm. Resistive RAM (ReRAM) technology is especially appealing for PIM-based DNN accelerators due to its high density to store weights, low leakage energy, low read latency, and high performance capabilities to perform the DNN dot-products massively in parallel within the ReRAM crossbars. However, the main bottleneck of these architectures is the energy-hungry analog-to-digital conversions (ADCs) required to perform analog computations in-ReRAM, which penalizes the efficiency and performance benefits of PIM. To improve energy-efficiency of in-ReRAM analog dot-product computations we present ReDy, a hardware accelerator that implements a ReRAM-centric Dynamic quantization scheme to take advantage of the bit serial streaming and processing of activations. The energy consumption of ReRAM-based DNN accelerators is directly proportional to the numerical precision of the input activations of each DNN layer. In particular, ReDy exploits that activations of CONV layers from Convolutional Neural Networks (CNNs), a subset of DNNs, are commonly grouped according to the size of their filters and the size of the ReRAM crossbars. Then, ReDy quantizes on-the-fly each group of activations with a different numerical precision based on a novel heuristic that takes into account the statistical distribution of each group. Overall, ReDy greatly reduces the activity of the ReRAM crossbars and the number of A/D conversions compared to an static 8-bit uniform quantization. We evaluate ReDy on a popular set of modern CNNs. On average, ReDy provides 13\% energy savings over an ISAAC-like accelerator with negligible accuracy loss and area overhead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员