Entity resolution (ER) is a fundamental task in data integration that enables insights from heterogeneous data sources. The primary challenge of ER lies in classifying record pairs as matches or non-matches, which in multi-source ER (MS-ER) scenarios can become complicated due to data source heterogeneity and scalability issues. Existing methods for MS-ER generally require labeled record pairs, and such methods fail to effectively reuse models across multiple ER tasks. We propose MoRER (Model Repositories for Entity Resolution), a novel method for building a model repository consisting of classification models that solve ER problems. By leveraging feature distribution analysis, MoRER clusters similar ER tasks, thereby enabling the effective initialization of a model repository with a moderate labeling effort. Experimental results on three multi-source datasets demonstrate that MoRER achieves comparable or better results to methods that have label-limited budgets, such as active learning and transfer learning approaches, while outperforming self-supervised approaches that utilize large pre-trained language models. When compared to supervised transformer-based methods, MoRER achieves comparable or better results, depending on the training data size. Importantly, MoRER is the first method for building a model repository for ER problems, facilitating the continuous integration of new data sources by reducing the need for generating new training data.


翻译:实体解析(ER)是数据集成中的一项基础任务,它使得从异构数据源中获取洞察成为可能。ER的主要挑战在于将记录对分类为匹配项与非匹配项,而在多源ER(MS-ER)场景中,由于数据源的异构性和可扩展性问题,这一过程可能变得复杂。现有的MS-ER方法通常需要已标注的记录对,且此类方法无法在多个ER任务间有效复用模型。我们提出MoRER(用于实体解析的模型库),这是一种构建由解决ER问题的分类模型组成的模型库的新方法。通过利用特征分布分析,MoRER对相似的ER任务进行聚类,从而能够以适中的标注工作量有效初始化模型库。在三个多源数据集上的实验结果表明,MoRER在标签预算有限的方法(如主动学习和迁移学习方法)上取得了相当或更好的结果,同时优于利用大型预训练语言模型的自监督方法。与基于Transformer的有监督方法相比,MoRER根据训练数据规模的不同,取得了相当或更好的结果。重要的是,MoRER是首个为ER问题构建模型库的方法,它通过减少生成新训练数据的需求,促进了新数据源的持续集成。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员