Universal visual anomaly detection (AD) aims to identify anomaly images and segment anomaly regions towards open and dynamic scenarios, following zero- and few-shot paradigms without any dataset-specific fine-tuning. We have witnessed significant progress in widely use of visual-language foundational models in recent approaches. However, current methods often struggle with complex prompt engineering, elaborate adaptation modules, and challenging training strategies, ultimately limiting their flexibility and generality. To address these issues, this paper rethinks the fundamental mechanism behind visual-language models for AD and presents an embarrassingly simple, general, and effective framework for Universal vision Anomaly Detection (UniADet). Specifically, we first find language encoder is used to derive decision weights for anomaly classification and segmentation, and then demonstrate that it is unnecessary for universal AD. Second, we propose an embarrassingly simple method to completely decouple classification and segmentation, and decouple cross-level features, i.e., learning independent weights for different tasks and hierarchical features. UniADet is highly simple (learning only decoupled weights), parameter-efficient (only 0.002M learnable parameters), general (adapting a variety of foundation models), and effective (surpassing state-of-the-art zero-/few-shot by a large margin and even full-shot AD methods for the first time) on 14 real-world AD benchmarks covering both industrial and medical domains. We will make the code and model of UniADet available at https://github.com/gaobb/UniADet.


翻译:通用视觉异常检测(AD)旨在面向开放动态场景,遵循零样本和少样本范式,在无需任何数据集特定微调的情况下识别异常图像并分割异常区域。近年来,视觉-语言基础模型在各类方法中得到广泛应用,我们见证了其显著进展。然而,当前方法往往受限于复杂的提示工程、精细的适配模块和具有挑战性的训练策略,最终限制了其灵活性与通用性。为解决这些问题,本文重新思考了视觉-语言模型在异常检测中的基础机制,并提出了一种极其简洁、通用且有效的通用视觉异常检测框架(UniADet)。具体而言,我们首先发现语言编码器被用于推导异常分类与分割的决策权重,随后论证了该组件在通用异常检测中并非必需。其次,我们提出了一种极其简洁的方法,将分类与分割任务完全解耦,并实现跨层级特征解耦,即为不同任务和层级特征学习独立的权重。UniADet具有高度简洁性(仅学习解耦权重)、参数高效性(仅含0.002M可学习参数)、强通用性(适配多种基础模型)和卓越有效性(在涵盖工业与医疗领域的14个真实世界异常检测基准测试中,大幅超越当前最优的零样本/少样本方法,并首次超越全监督异常检测方法)。我们将通过https://github.com/gaobb/UniADet公开UniADet的代码与模型。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
Top
微信扫码咨询专知VIP会员