The burning number of a graph $G$, denoted by $b(G)$, is the minimum number of steps required to burn all the vertices of a graph where in each step the existing fire spreads to all the adjacent vertices and one additional vertex can be burned as a new fire source. In this paper, we study the burning number problem both from an algorithmic and a structural point of view. The decision problem of computing the burning number of an input graph is known to be NP-Complete for trees with maximum degree at most three and interval graphs. Here, we prove that this problem is NP-Complete even when restricted to connected proper interval graphs and connected cubic graphs. The well-known burning number conjecture asserts that all the vertices of any graph of order $n$ can be burned in $\lceil \sqrt{n}~\rceil$ steps. In line with this conjecture, upper and lower bounds of $b(G)$ are well-studied for various special graph classes. Here, we provide an improved upper bound for the burning number of connected $P_k$-free graphs and show that the bound is tight up to an additive constant $1$. Finally, we study two variants of the problem, namely edge burning (only edges are burned) and total burning (both vertices and edges are burned). In particular, we establish their relationship with the burning number problem and evaluate the complexity of these variants.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
17+阅读 · 2021年1月21日
Arxiv
19+阅读 · 2021年1月14日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
70+阅读 · 2022年6月30日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
17+阅读 · 2021年1月21日
Arxiv
19+阅读 · 2021年1月14日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员