Evidence derived primarily from physical models has identified saltwater disposal as the dominant causal factor that contributes to induced seismicity. To complement physical models, statistical/machine learning (ML) models are designed to measure associations from observational data, either with parametric regression models or more flexible ML models. However, it is often difficult to interpret the statistical significance of a parameter or the predicative power of a model as evidence of causation. We adapt a causal inference framework with the potential outcomes perspective to explicitly define what we meant by causal effect and declare necessary identification conditions to recover unbiased causal effect estimates. In particular, we illustrate the threat of time-varying confounding in observational longitudinal geoscience data through simulations and adapt established statistical methods for longitudinal analysis from the causal interference literature to estimate the effect of wastewater disposal on earthquakes in the Fort-Worth Basin of North Central Texas from 2013 to 2016.


翻译:主要基于物理模型的证据已证实盐水注入是诱发地震的主要成因。为补充物理模型,统计/机器学习(ML)模型被设计用于从观测数据中度量关联性,既可采用参数回归模型,也可使用更灵活的ML模型。然而,参数统计显著性或模型预测能力通常难以被解释为因果关系的证据。我们采用基于潜在结果视角的因果推断框架,明确定义因果效应的内涵,并阐明恢复无偏因果效应估计所需的必要识别条件。特别地,我们通过模拟研究阐明时变混杂因素对观测性纵向地球科学数据的潜在威胁,并借鉴因果推断文献中成熟的纵向分析方法,估算了2013年至2016年期间废水注入对德克萨斯州中北部沃斯堡盆地地震活动的影响。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员